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1 Introduction to Optimal Transport

Imagine a scenario where a construction company needs to level a piece of land: they need
to move soil from several hills (where there’s too much soil) to several pits (where there’s
too little). Each hill and pit has a certain amount of soil to be moved, and transporting soil
involves costs—fuel, labor, and wear and tear on machinery—that increase with distance.
The company’s goal is to move the soil in such a way that the land is leveled at the lowest
possible cost. This scenario, simple in its essence, introduces us to the fundamental problem
of optimal transport: how to transport mass (in this case, soil) from one configuration to
another in the most efficient way possible.

The problem can be abstractly defined as finding the most efficient way to transport
mass (modeled as a distribution of matter or probability) from one distribution to another,
minimizing the overall transportation cost.

To formalize this scenario let’s model the soil from the hills and the soil from the pits by
two probability measures, µ, and ν, defined on two measure spaces X and Y , respectively.
We also need to pay a price for transporting mass, a cost function c : X × Y → [0,+∞]
which is measurable and measures the cost of transporting one unit of mass from x ∈ X to
y ∈ Y . Then, the optimal transport problem is how to transport µ to ν whilst minimizing
the cost c. We also need to define a way to transfer mass, a Transference plan.

Definition 1.1 (Transference Plan). Let µ and ν be probability measures on metric
spaces X and Y respectively. A transference plan π is a probability measure on the product
space X × Y .

2 Monge Problem and Kantorovich Relaxation

Definition 2.1 (Pushforward Measure). Let (X,A) and (Y,B) be measurable spaces,
and let T : X → Y be a measurable map. For a measure µ on (X,A), the pushforward
measure of µ by T , denoted by T#µ, is a measure on (Y,B) defined for any B ∈ B by

T#µ(B) := µ(T−1(B)),
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where T−1(B) = {x ∈ X : T (x) ∈ B}. We say T transports µ onto ν.

Definition 2.2 (Monge problem). Consider two metric spaces X,Y , two probability
measures µ ∈ P(X), ν ∈ P(Y ) and a cost function c : X × Y → R ∪ {+∞}. Monge’s
problem is the following optimization problem

inf
T :T#µ=ν

{∫
X
c(x, T (x))dµ(x)

}
The map T that attains the infimum is called an optimal transport plan. However,
there might not exist a map T : X → Y such that ν = µ ◦ T−1:

Example 2.1. Let ν a probability measure such that |Supp(v)| > 1 and µ = δa for some
a ∈ X. Then, for B ⊂ Y

ν(B) = T#µ(B) = µ(T−1(B)) = δT (a).

But clearly this is not possible.

The Kantorovich relaxation extends Monge’s problem to a broader class of admissible
transport plans, allowing for mass splitting.

Definition 2.3 (admissible transference plan). An admissible transference plan
has µ and ν as its marginals, meaning that for all measurable sets A ⊆ X and B ⊆ Y , we
have:

π(A× Y ) = µ(A) and π(X ×B) = ν(B).

We denote the set of admissible transference plans by Π(µ, ν). Note that some equivalent
representation of admissibility are∫

Y
dπ(x, y) = dµ(x) and

∫
X
dπ(x, y) = dν(y),

and, for all φ,ψ measurable functions, say, in L1(µ)× L1(ν),∫
X×Y

(φ(x) + ψ(y)) dπ(x, y) =

∫
X
φ(x) dµ(x) +

∫
Y
ψ(y) dν(y).

Definition 2.4 (Kantorovich Problem). Given two probability measures µ ∈ P(X)
and ν ∈ P(Y ) on metric spaces X and Y , and a cost function c : X × Y → [0,+∞], the
Kantorovich problem is defined as:

inf
π∈Π(µ,ν)

∫
X×Y

c(x, y) dπ(x, y) = inf
π∈Π(µ,ν)

K(π)

where

Π(µ, ν) = {π ∈ P(X × Y ) : π(A× Y ) = µ(A) and π(X ×B) = ν(B)}.
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Then, it is natural to ask if there, and when, exists an optimal transport plan for the
Kantorovich problem.

Definition 2.5 (Lower Semicontinuity). A function f : X → R∪{+∞}, where X is a
topological space, is said to be lower semicontinuous at a point x ∈ X if for every sequence
(xn) ⊂ X such that xn −−−→

n→∞
x, the following condition is satisfied:

lim inf
n→∞

f(xn) ≥ f(x).

Remark 2.1. f is lower semicontinuous ⇐⇒ epi(f) is closed ⇐⇒ the sublevel sets
f−1((−∞, a)) are closed.

Proposition 2.1. Let µ ∈ P(X), ν ∈ P(Y ) where X,Y are Polish spaces, and assume
c : X × Y → [0,∞) is lower semicontinuous. Then there exists π∗ ∈ Π(µ, ν) such that

π∗ ∈ argmin
π∈Π(µ,ν)

K(π).

The general idea of the proof is to show that the set Π(µ, ν) is compact in the weak
topology P(X × Y ) and that the functional K(π) is lower semicontinuous. Then we would
use the general fact that lower semicontinuous functions attain their minima in compact
sets. By Prokhorov’s Theorem it is sufficient to show that Π(µ, ν) is closed and uniformly
tight.

Proof. Note Π(µ, ν) ̸= ∅ since µ⊗ ν ∈ Π(µ, ν).
We first show that Π(µ, ν) is compact. Let δ > 0, and let (K,L) ⊆ X × Y be such that
µ(X \K) ≤ δ and ν(Y \ L) ≤ δ.

For π ∈ Π(µ, ν), we have:

π((X × Y ) \ (K × L)) ≤
(1)
π(X × (Y \ L)) + π((X \K)× Y )

= ν(Y \ L) + µ(X \K) ≤ 2δ.

Where (1), follows since (x, y) ∈ π((X × Y ) \ (K × L)) =⇒ x /∈ K or y /∈ L

⇒ (x, y) ∈ (X × (Y \ L)) ∪ ((X \K)× Y ).

Thus, Π(µ, ν) is tight. By Prokhorov’s Theorem1, Π(µ, ν) is sequentially compact (rela-
tively compact with respect to the weak topology).

1Prokhorov’s Theorem implies that if (πn) is a tight sequence in P(X), then there exists a subsequence
(πnk ) and a probability measure π ∈ P(X) such that πnk converges weakly to π. We are actually using a
Corollary of this.
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Now, the integral is a continuous operator, which in turn gives that the conditions
that define Π(µ, ν) are continuous with respect to P (X × Y ). Then sequences in Π(µ, ν)
converge to points in Π(µ, ν) thus containing its limit points, hence closed (under the
weak topology). Alternatively, the admissible couplings condition holds for all bounded
continuous functions (and by weak convergence it is closed).

Let (πn) ⊆ Π(µ, ν) be a minimizing sequence (i.e., K(πn) → infπ∈Π(µ,ν)K(π)) such that
πn → π∗. By compactness of Π(µ, ν), π∗ ∈ Π(µ, ν). Now, since c is l.s.c. and nonnegative
(thus bounded from below), we can apply the version of Portmanteau Theorem (weak
convergence of measures)2 to obtain:

inf
π∈Π(µ,ν)

K(π) = lim
n→∞

∫
X×Y

c(x, y) dπn(x, y) ≥
∫
X×Y

c(x, y) dπ∗(x, y).

3 Kantorovich Duality

Now that we know the solution exists, how do we find a solution? Duality is the key. To
construct our dual problem, we first rewrite the Kantorovich problem as an unconstrained
optimization problem.

We will make use of the common trick in convex optimization that allows us to formulate
the dual problem.

For C a convex set and f a convex function, we have that

min
x∈C

f(x) = min
x∈Rn

f(x) +

{
0, x ∈ C

+∞, otherwise.
= min

x∈Rn
f(x) + IC(x).

Using a similar reasoning for the Kantorovich problem we can define the indicator function
by

IΠ(µ,ν)(π) =

{
0, if π ∈ Π(µ, ν)

+∞, else,

and let M+ denote the set of non-negative Borel measures on X × Y . Then,

inf
π∈Π(µ,ν)

K(π) = inf
π∈Π(µ,ν)

∫
c(x, y) dπ = inf

π∈M+

(∫
c(x, y) dπ + IΠ(µ,ν)(π)

)
... (∗),

Now noting that,

IΠ(µ,ν)(π) = sup
(φ,ψ)∈L1(µ)×L1(ν)

{∫
φdµ+

∫
ψ dν −

∫
(φ(x) + ψ(y)) dπ(x, y)

}
,

2For πn → π, weakly, the lim infn→∞
∫
fdπn ≥

∫
fdπ ∀f , bounded from below and lower semicontin-

uous.
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gives,

(∗) = inf
π∈M+

sup
(φ,ψ)

{∫
X×Y

c(x, y)dπ(x, y) +

∫
X
φdµ+

∫
Y
ψdν −

∫
X×Y

(φ(x) + ψ(y))dπ(x, y)

}
=
(1)

sup
(φ,ψ)

inf
π∈M+

{∫
X×Y

c(x, y)dπ(x, y) +

∫
X
φdµ+

∫
Y
ψdν −

∫
X×Y

(φ(x) + ψ(y))dπ(x, y)

}

= sup
(φ,ψ)

{∫
X
φdµ+

∫
Y
ψdν − sup

π∈M+

∫
X×Y

{(φ(x) + ψ(y)− c(x, y))dπ(x, y)}

}
... (∗∗)

Note that for (1), we assumed a minimax principle to switch the infimum and supremum3.
Now, suppose that φ(x) + ψ(y) − c(x, y) = ϵ > 0 for some (x0, y0). Then, we can define
π = λδ(x0,y)) and take λ→ ∞, which would imply that

sup
π∈M+

∫
X×Y

(φ(x) + ψ(y)− c(x, y))dπ(x, y) ≥ λϵ→ ∞.

If φ(x) + ψ(y) − c(x, y) ≤ 0 a.e. (i.e. µ−a.e x ∈ X and ν−a.e y ∈ Y ) the supremum is
obtained at π = 0. Then, the set of feasible solutions for the dual is given by:

D(µ, ν) = {(φ,ψ) ∈ L1(µ)× L1(ν) : φ(x) + ψ(y) ≤ c(x, y)}.

Thus,

inf
π∈M+

∫
X×Y

(φ(x) + ψ(y)− c(x, y))dπ(x, y) =

{
0, (φ,ψ) ∈ D(µ, ν),

+∞, otherwise.

Therefore the Kantorovich optimal transport problem can be formulated as:

inf
π∈Π(µ,ν)

K(π) = inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ = sup
(φ,ψ)∈D(µ,ν)

{∫
X
φdµ+

∫
Y
ψdν

}
= sup

(φ,ψ)∈D(µ,ν)
J(φ,ψ),

Where J : L1(µ)× L1(ν) → R.

Theorem 3.1 (Kantorovich Duality). Let µ ∈ P(X), ν ∈ P(Y ) where X,Y are Polish
spaces. Let c : X × Y → [0,+∞) be a lower semi-continuous cost function. Then (using
the above notation),

min
π∈Π(µ,ν)

K(π) = sup
(φ,ψ)∈D(µ,ν)

J(φ,ψ).

Although strong duality formally relates to the values of objective functions, it is often
observed that the solutions to the primal and dual problems are closely interconnected.

3To make this statement rigurous we can rely on the Fenchel-Rockafellar Duality Theorem, see [4].
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3.1 Existence of solutions to the Dual Problem

The theorem stated in this section and its proof are based on [5] and [6].

Definition 3.1 (c-transform). Let φ : X → R∪{∞}, the c-transform of φ is denoted by
φc : Y → R ∪ {∞} and defined by

φc : Y → R φc(y) = inf
x∈X

{c(x, y)− φ(x)}.

Theorem 3.2 (Existence of maximizers). Let µ ∈ P (X), ν ∈ P (Y ), where X and
Y are Polish Spaces, and c : X × Y → [0,∞). Assume that there exists cX ∈ L1(µ),
cY ∈ L1(ν) such that c(x, y) ≤ cX(x)+ cY (y) for µ-almost every x ∈ X and ν-almost every
y ∈ Y . In addition, assume that

M :=

∫
X
cX(x) dµ(x) +

∫
Y
cY (y) dν(y) <∞. (1)

Then there exists (φ,ψ) ∈ D(µ, ν) such that

sup
D(µ,ν)

J = J(φ,ψ).

Furthermore we can choose (φ,ψ) = (ηcc, ηc) for some η ∈ L1(µ).

To prove this theorem, we will make use of two lemmas. Essentially, the first lemma
suggests that we only need to consider c-transform pairs instead of all (φ,ψ) ∈ D(µ, ν).
The second lemma aids in establishing upper bounds on maximizing sequences, which will
be used to prove the existence of a maximizing function.

Lemma 3.1. Let µ ∈ P (X), ν ∈ P (Y ). For any a ∈ R, and (φ̃, ψ̃) ∈ D we have
(φ,ψ) = (φ̃− a, ψ̃ + a) satisfies J(φ,ψ) ≥ J(φ̃, ψ̃) and φ(x) + ψ(y) ≤ c(x, y) for µ-almost
every x ∈ X and ν-almost every y ∈ Y . Furthermore, if J(φ̃, ψ̃) > −∞, M < +∞, then
there exists CX ∈ L1(µ) and CY ∈ L1(ν) such that (φ,ψ) ∈ D.

To be added—-

Proof. To be added.

Lemma 3.2.

Proof.

With the above two lemmas we are ready to prove the existence theorem of maximizers
for the dual problem.

Proof. of Theorem (Existence of maximizers). To be added.

From now on, we will focus our analysis on the quadratic cost, c(x, y) = ∥x−y∥22. Before
that, we will give a brief review of convexity that will be useful in subsequent sections.
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4 Review of Convexity

Definition 4.1 (Fenchel conjugate). The convex conjugate of a proper function φ : Rn →
R ∪ {+∞} is defined by

φ∗(y) = sup
x∈Rn

{⟨x, y⟩ − φ(x)}.

The subdifferential is a generalization of the differential that always exists for lower semi-
continuous convex functions.

Definition 4.2 (Subdifferential). Let f : Rn → R ∪ {+∞} be a convex function. The
subdifferential of f at a point x ∈ Rn, denoted by ∂f(x), is defined as the set

∂f(x) = {v ∈ Rn | ∀y ∈ Rn, f(y) ≥ f(x) + v · (y − x)}.

Proposition 4.1 (Subdifferential characterization). Let φ be a proper, lower semi-
continuous, convex function on Rn. Then for all x, y ∈ Rn

x · y = φ(x) + φ∗(y) ⇐⇒ y ∈ ∂φ(x).

Proposition 4.2. If φ : Rn → R ∪ {+∞} is convex then (1) φ is almost everywhere
differentiable and (2) whenever φ is differentiable ∂φ(x) = {∇φ(x)}.

Proposition 4.3 (Legendre duality for l.s.c convex functions). Let φ : Rn → R ∪
{+∞} be proper. Then the following are equivalent:

1. φ is convex and lower semi-continuous;

2. φ = ψ∗ for some proper function ψ;

3. φ∗∗ = φ.

5 Case: Quadratic cost

We will restrict the following analysis to the case where X,Y ∈ Rn and c(x, y) = ∥x− y∥22.
In turns out that the quadratic cost have close connection with Convex Analysis. First,
we restate our Kantorovich problem in an equivalent and convenient manner.

Recall than in the dual problem we were constrained to the space

D(µ, ν) = {(φ,ψ) ∈ L1(µ)× L1(ν) : φ(x) + ψ(y) ≤ c(x, y)}.

Thus, (φ,ψ) ∈ D(µ, ν) implies φ(x) + ψ(y) ≤ ∥x−y∥2
2 dµ-a.e. and dν-a.e. This leads to

φ(x) + ψ(y) ≤ ∥x∥2

2
+

∥y∥2

2
− ⟨x,y⟩ ⇐⇒ ⟨x,y⟩ ≤

(
∥x∥2

2
− φ(x)

)
+

(
∥y∥2

2
− ψ(y)

)
.
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Define, ∥x∥2
2 −φ(x) = φ̃ and ∥y∥2

2 −ψ(y) = ψ̃. Clearly φ̃ ∈ L1(µ), ψ̃ ∈ L1(ν) whenever µ, ν
have finite second moments. Let

M2 :=

∫
Rn

∥x∥2

2
dµ(x) +

∫
Rn

∥y∥2

2
dν(y) < +∞.

Then we can rewrite our primal problem as

inf
π∈Π(µ,ν)

{∫
∥x− y∥2

2
dπ(x, y)

}
=M2 − sup

π∈Π(µ,ν)

{∫
⟨x, y⟩ dπ(x, y)

}
,

and the dual problem as

sup
D

{∫
φdµ+

∫
ψ dν

}
=M2 − inf

D̃

{∫
φ̃ dµ+

∫
ψ̃ dν

}
,

where D̃ :=
{
(φ̃, ψ̃) ∈ L1(µ)× L1(ν) : ⟨x, y⟩ ≤ φ̃(x) + ψ̃(y)

}
. Thus Kantorovich Duality

becomes:

sup
π∈Π

{∫
⟨x, y⟩ dπ(x, y)

}
= inf

D̃

{∫
φ̃ dµ+

∫
ψ̃ dν

}
The following Remark is the analogue of Lemma 3.1, which is the lemma that states

that we only need to restrict the minimization problem to a certain type of functions in in
D̃.

Remark 5.1.

inf
(φ̃,ψ̃)∈D̃

{∫
φ̃ dµ+

∫
ψ̃ dν

}
≥ inf

φ∈L1(µ)

{∫
φ∗∗ dµ+

∫
φ∗ dν

}
Proof. The result follows by noting that:

J(φ̃, ψ̃) ≥
(1)
J(φ̃, φ̃∗) ≥

(2)
J(φ̃∗∗, φ̃∗)

where

(1) φ̃∗(y) = supx∈Rn {⟨x, y⟩ − φ̃(x)} ≤
(D̃)

ψ̃(y)

(2) Note ⟨x, y⟩ ≤ φ̃(x) + φ̃∗(y) so (φ̃, φ̃∗) ∈ D̃ =⇒ φ̃∗∗(x) = supy∈Rn {⟨x, y⟩ − φ̃∗(y)} ≤
φ̃(x)

Therefore,

inf
(φ̃,ψ̃)∈D̃

{∫
φ̃ dµ+

∫
ψ̃ dν

}
≥ inf

φ∈L1(µ)

{∫
φ∗∗ dµ+

∫
φ∗ dν

}
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Therefore, minimizers of the dual problem take the form (φ∗∗, φ∗), that is we can take
infimum restricted to pairs (φ∗∗, φ∗), which are convex lower semicontinuous functions.

Theorem 5.1 (Existence of an optimal pair of convex conjugate functions). Let
µ, ν be two probability measures on Rn with finite second moment. Then, there exists a
pair (φ,φ∗) of l.s.c. proper conjugate convex functions on Rn such that:

inf
D̃

{∫
φ̃ dµ+

∫
ψ̃ dν

}
=

∫
φdµ+

∫
φ∗ dν.

Proof. This is just a corollary of Theorem 3.2 with the necessary adaptations to the
quadratic cost, see Theorem 1.14 in [3] for one equivalence.

5.1 Optimality Criterion with Quadratic Cost (Knott-Smith)

When a transport plan is optimal? Knott-Smith Optimality criterion states that a transfer
plan is optimal if and only if it is concentrated the sub-differential of a convex function.

Theorem 5.2 (Knott-Smith Optimality). Let µ ∈ P (X), ν ∈ P (Y ) with X,Y ⊆ Rn
and assume that µ, ν both have finite second moments. A plan π∗ ∈ Π(µ, ν) is optimal if
and only if there exists a convex lower semi-continuous function φ such that for π-almost
all (x, y), y ∈ ∂φ(x). Then, (φ,φ∗) is a minimizer of the problem infD̃(µ,ν) J(φ,ψ), that is:

inf
D̃(µ,ν)

J(φ,ψ) =
∫
X
φ(x) dµ(x) +

∫
Y
φ∗(y) dν(y)

where ⟨x, y⟩ ≤ φ(x) + φ∗(y) for all x, y.

Proof. Let π∗ ∈ Π(µ, ν) and φ̃ be the proper lower semi-continuous function such that the
pair (φ̃, φ̃∗) minimizes J over D̃. The, by duality, we have∫

X
φ̃(x) dµ(x) +

∫
Y
φ̃∗(y) dν(y) =

∫
X×Y

x · y dπ∗(x, y).

Equivalently, ∫
X×Y

φ̃(x) + φ̃∗(y)− x · y dπ∗(x, y) = 0.

We must have φ̃(x) + φ̃∗(y) = x · y for π∗-almost every (x, y), and therefore y ∈ ∂φ̃(x) for
π∗-almost every (x, y).
Conversely, suppose y ∈ ∂φ̃(x) for π∗-almost every (x, y) where φ̃ is a L1(µ) proper, lower
semi-continuous and convex function. Then,∫

X×Y
φ̃(x) + φ̃∗(y)− x · y dπ∗(x, y) = 0.
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We leave the integrability of φ̃∗ to the reader, then (φ̃, φ̃∗) ∈ D̃. Hence,

min
φ̃
J ≤ J(φ̃, φ̃∗) =

∫
X×Y

x · y dπ∗(x, y) ≤ max
π∈Π(µ,ν)

∫
X×Y

x · y dπ(x, y).

By duality it follows that (φ̃, φ̃∗) achieves the minimum of J and π∗ achieves the maximum
of

∫
X×Y x · y dπ(x, y) in Π(µ, ν). Hence π∗ is an optimal plan in the Kantorovich sense.

5.2 Brenier’s Theorem

The following theorem, established by Brenier, states that under mild regularity conditions,
the solution to the Kantorovich problem with quadratic cost is achieved by a deterministic
coupling, which is unique.

Theorem 5.3 (Brenier’s Theorem). Let µ ∈ P (X), ν ∈ P (Y ) with X,Y ⊆ Rn and
assume that µ, ν both have finite second moments and that µ does not give mass to small
sets. Then there is a unique solution π∗ ∈ Π(µ, ν) to Kantorovich’s optimal transport
problem with cost c(x, y) = 1

2∥x− y∥2 which is given by

π∗ = (Id×∇φ)#µ

where ∇φ is the gradient of a convex function (defined µ-almost everywhere) that pushes
µ forward to ν, i.e., (∇φ)#µ = ν.

Proof. Let π∗ be a minimizer of Kantorovich’s optimal transport problem.
By Knott-Smith, there exists a convex lower semi-continuous function φ such that for

π∗-almost every (x, y), y ∈ ∂φ(x). But convexity implies that φ is λ-almost everywhere
differentiable (µ << λ, then µ-a.e. diff.) Since µ doesn’t assign mass to small sets,
“All mass is concentrated in the interior of the domain.” Therefore, µ-almost everywhere
∂φ(x) = {∇φ(x)} and therefore µ-almost everywhere ∇φ(x) = y for π∗-almost every (x, y).

Note, if y = ∇φ(x) almost everywhere (a.e.) then π = (Id×∇φ)#µ.

V (B) = π∗ (Rn ×B) = µ
(
(Id×∇φ)−1(Rn ×B)

)
= µ ({x : (Id×∇φ)(x) ∈ Rn ×B})
= µ ({x : ∇φ(x) ∈ B})
= µ

(
∇φ−1(B)

)
= (∇φ)#µ(B).

It remains to show uniqueness of π∗.
Suppose there exists f such that (∇f)#µ = ν. We’ll show ∇φ = ∇f , µ-a.e.. (i.e., the
transport maps are the same)
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By Knott-Smith: (f, f∗) is optimal for the dual:∫
f dµ+

∫
f∗ dν =

∫
φdµ+

∫
φ∗ dν

Let π∗ be associated to (φ,φ∗). Then,∫
(f + f∗) dπ∗ =

∫
(φ+ φ∗) dπ∗ =

∫
⟨x, y⟩ dπ∗,

Now, since π∗ = (Id×∇φ)#µ, we have:

⇒
∫
f(x) dµ+

∫
f∗(∇φ(x)) dµ =

∫
⟨x,∇φ(x)⟩ dµ⇒

∫
(f(x) + f∗(∇φ(x))− ⟨x,∇φ(x)⟩) dµ = 0

Recall (f, f∗) ∈ D̃,
⇒ f(x) + f∗(∇φ(x)) = ⟨x,∇φ(x), ⟩ µ-a.e.

∴ ∇φ(x) ∈ ∂f(x), µ-a.e.x.

But f is µ-a.e. differentiable , thus,

∇φ(x) = ∇f(x), µ-a.e.x

6 Wasserstein distance

Definition 6.1 (p-Wasserstein distance). The p-Wasserstein distance between two
probability measures µ and ν is defined via

W p
p (µ, ν) := inf

π∈Π(µ,ν)

∫
Rd×Rd

∥x− y∥p dπ(x, y),

The space of probability measures on Rd with finite p-th moment is denoted by

Pp(Rd) :=
{
µ ∈ P(Rd) |

∫
Rd

∥x∥p dµ(x) <∞
}
.

The space of probability measures with the p-Wasserstein distance can be viewed as a
Riemannian Manifold.

Definition 6.2 (Riemannian Manifold). A Riemannian Manifold (M, ⟨·, ·⟩) is a real
smooth manifold M (differential manifold locally similar to a vector space) equipped with
a positive-definite inner product ⟨·, ·⟩p on the tangent space Tp(M) at each point p.
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Proposition 6.1. The space (Pp(Rd),W2) is a metric space. That is p-Wasserstein dis-
tance defines a metric over Pp(Rd), that is for all µ, ν ∈ Pp(Rd) it holds:

1. Wp(µ, ν) ≥ 0

2. Wp(µ, ν) =Wp(ν, µ)

3. Wp(µ, ν) = 0 ⇔ µ = ν

4. Wp(µ, ν) ≤Wp(µ, ξ) +Wp(ξ, ν) for all ξ ∈ Pp(Rd).

Remark 6.1. Wasserstein distances induce a useful topology on r.v.’s. They metrize weak
convergence on compact spaces.

Wp(µn, µ) → 0 ⇔ µn ⇀ µ and

∫
∥ · ∥p dµn →

∫
∥ · ∥p dµ.

As previously observed, Wp for p = 2 exhibits a remarkably special structure. Specifically
for p = 2, there is a close connection with Convex Analysis.
The following theorem, sometimes referred to as the fundamental theorem of optimal trans-
port, see [2], for the 2-Wasserstein distance is a direct consequence of the aforementioned
results.

Theorem 6.1 (Fundamental theorem of optimal transport). Let µ, ν ∈ P2(Rd).
Then, the following assertions hold.

1. (strong duality) The value of the dual optimal transport problem from µ to ν equals
1
2W

2
2 (µ, ν).

2. (existence of optimal dual potentials) There exists an optimal pair (f∗, g∗) for the
dual optimal transport problem.

3. (characterization of optimality) The optimal dual potentials are of the form

f∗ =
∥ · ∥2

2
− φ, g∗ =

∥ · ∥2

2
− φ∗,

where φ : Rd → R∪{+∞} is a proper, convex, lower semicontinuous function and φ∗

is its convex conjugate. If f∗ denotes the optimal transport plan, then for f∗-almost
every (x, y) ∈ Rd × Rd, it holds that φ(x) + φ∗(y) = ⟨x, y⟩, i.e., f∗ is supported on
the subdifferential of φ.

4. (Brenier’s theorem) Suppose in addition that µ is absolutely continuous w.r.t. the
Lebesgue measure on Rd. Then, the optimal transport plan is unique, and moreover
it is induced by an optimal transport map T . The mapping T is characterized as the
(µ-almost surely) unique gradient of a proper convex lower semicontinuous function
φ which pushes forward µ to ν: T = ∇φ and (∇φ)#µ = ν.
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