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1 Introduction to Game Theory

What is Game Theory? Game theory is a mathematical framework for analyzing sit-
uations in which the outcomes depend on the interactions of multiple decision-makers
(players). It studies the strategic decisions where the success of one player’s strategy de-
pends on the strategies adopted by others. Game theory is widely applicable in economics,
political science, biology, and many other disciplines.

There are various types of games analyzed in game theory, each with its own unique
characteristics and applications:

• Normal-Form (or Strategic-Form) Games: Represented by a matrix showing
the payoffs for each strategy combination chosen simultaneously by the players.

• Extensive-Form Games: Depicted as a decision tree showing the sequential nature
of the game, with decision nodes representing points where players make choices.

• Repeated Games: Games played over several periods, where players can adjust
their strategies based on previous outcomes.

• Bayesian Games: Games where players have incomplete information about other
players, such as their payoffs or types, and must form beliefs and strategies based on
this uncertainty.

2 Normal-Form Games

The normal-form representation is the most straightforward and concise method for de-
picting a game. Normal-Form games are also known as strategic form games or matrix
games.

Definition 2.1 (Normal-Form Game). A normal-form game is a tuple G = (I, {Ai}i∈I , {ui}i∈I)
such that:
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1. I = {1, 2, . . . , N} is the set of players.

2. Ai is the set of actions available to player i.

3. ui : A1 × · · · ×AN → R is the payoff function for player i.

We write A =
∏N

i=1Ai for the set of action profiles, a = (a1, . . . , an) ∈ A and A−i =∏N
j ̸=iAj for the actions of all players but i.

Definition 2.2. In a normal-form game G, let Σi = ∆(Ai) denote the set of probability
distributions over the set Ai and call an element σi ∈ Σi a (mixed) strategy of player i.
We say that a strategy σi is:

1. A pure strategy if it assigns probability 1 to a single action. We will denote by ai
a pure strategy σi that assigns probability 1 to action ai.

2. A (mixed) strategy if it assigns probabilities to the actions in Ai.

3. A strictly mixed strategy if it assigns strictly positive probabilities on more than
one action.

We denote by Σ =
∏N

i=1Σi the set of strategies profiles σ = (σ1, . . . , σN ) ∈ Σ and Σ−i =∏N
j ̸=iΣj for the strategies of all players but i.,

Note that in this form each player chooses, individually and independently, an action
ai ∈ Ai and then the action profile is formed a ∈ A. No player knows the choice of the
other player before choosing its own action.
Note that by independence, the expected payoff of a player i sum of payoffs for all possible
action profiles weighted by the probability of each action profile occurring, i.e.:

E[ui(σ)] =
∑
a∈A

ui(a) ·
∏
j∈I

σj(aj).

What does it mean to solve a game? It involves predicting how the game will unfold,
identifying the strategies players will choose, and determining the resulting outcome of the
game.

2.1 Solution concepts:

We will explore two basic assumptions that derive different solutions concepts and impose
restrictions on the way players can play a game: Rationality and Common Knowledge
of Rationality. We will ask two primary questions and derive different solutions concepts
for each:

1. What strategies will never be played?
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• Assumption of Rationality gives Dominant strategy equilibrium.

• Assumptions of Rationality and Common Knowledge of Rationality give Iterated
elimination of strictly dominated strategies equilibrium (IESDS or ISD).

2. What strategies could potentially be played?

• Assumptions of Rationality and Common Knowledge of Rationality give the
concept of Rationalizability.

Finally, we will compare these solution concepts.

3 Strict Dominance

In this section, we assume rationality. That is, we assume that players are rational: they
never play bad strategies or that players maximize their expected payoffs.

Definition 3.1 (Strictly Dominated strategy). In a normal-form game G, a pure
strategy ai ∈ Σi is strictly dominated if there exists σ′

i ∈ Σi such that

ui(σ
′
i, a−i) > ui(ai, a−i), ∀a−i ∈ Σ−i.

Note that since mixed strategies are convex combinations of pure strategies, we have,

ui(σ
′
i, σ−i) > ui(ai, σ−i), ∀σ−i ∈ Σ−i.

We say that σi ∈ Σi is strictly dominated if there exists σ′
i ∈ Σi that strictly dominates σi.

Remark: A rational player will never play a strictly dominated strategy.

Example 3.1. Consider the Prisoners’ dilemma below:

C L

C 1, 1 −1, 2

L 2,−1 0, 0

For each player, C is strictly dominated by L. Since neither player plays C, we conclude
that strategy (L,L) will be played.

Remark: In this example, rationality alone is sufficient to predict the chosen strategy, as
choosing lying (L) is the rational course of action since playing C is worst than playing L,
regardless of what the opponent does.

However, there are two important things to consider:
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Example 3.2 (In many games, rationality alone will not give a unique predic-
tion).

L M H

L 6, 6 −2, 8 0, 4

M 8, 2 4, 4 1, 3

H 4, 0 3, 1 2, 2

Strategy L is never played by either player, it is a dominated strategy. Neither M nor H is
dominated, thus, rationality alone does not offer a unique solution.

Example 3.3 (Verification of mixed strategies). Note to show that a strategy is not
strictly dominated, it is not enough to verify that it is not dominated by only pure strategies,
we also need to prove that there exists no mixed strategy that strictly dominates it.

L R

U 3, 0 −1, 0

M 0, 0 0, 0

D −1, 0 3, 0

No pure strategy is strictly dominated by any pure strategy. However, M is indeed strictly
dominated by the mixed strategy

(
1
2U,

1
2D

)
.

3.1 Dominant Strategy Equilibrium

A dominant strategy is always the best thing you can do, regardless of what your opponents
choose.

Definition 3.2 (Strictly dominant strategy). A strategy σi ∈ Σi is a strictly dominant
strategy for player i if every other strategy of i is strictly dominated by it. That is,

ui(σi, σ−i) > ui(σ
′
i, σ−i) for all σ′

i ∈ Σi, σ
′
i ̸= σi, and all σ−i ∈ Σ−i.

With this, we can define the first solution concept:

Definition 3.3 (Strict dominant strategy equilibrium). The strategy profile σD ∈ Σ
is a strict dominant strategy equilibrium if σD

i ∈ Σi is a strict dominant strategy for all
i ∈ I.

If we can find a dominant strategy equilibrium for other games, then this solution concept
has a very appealing property:

Proposition 3.1. If a Normal-form game G has a strictly dominant strategy equilibrium
σD, then σD is the unique dominant strategy equilibrium.

What if no player has a dominated strategy, which implies that no player has a dominant
strategy either:
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Example 3.4 (Battle of the sexes). A game with no equilibrium under the solution
concept of strict dominance.

B F

B 3, 2 0, 0

F 0, 0 2, 3

Therefore, if we adhere strictly to the concept of strict dominance, we will find that many
games lack an equilibrium.

4 Iterated Elimination of Strictly Dominated Strategies (IESDS)

Recall that rationality alone implies to things:

1. A rational player will never play a dominated strategy.

2. If a rational player has a strictly dominant strategy then he will play it.

The second point gives the solution concept of strict dominance. However, we need a so-
lution concept that is more general.

Starting from the assumption of Rationality and its implication that players will never play
a dominated strategy, we ruled out what players will not do.

We now impose an additional assumption on the structure of the game and that rationality
of each player is common to all players, also know as Common Knowledge. That is,
if all players understand that no one will choose a strictly dominated strategy, they can
effectively disregard those strategies, enabling us to do much more than merely identifying
strategies that rational players will avoid. We can now ignore strictly dominated strategies,
giving rise to smaller, restrictive games with fewer strategies.

Example 4.1. A normal-form game where the iterative deletion of strictly dominated
strategies results in a single remaining pure strategy.

L M R

U 3, 2 1, 1 4, 0

D 1, 2 4, 1 3, 5

⇒
(1)

L R

U 2, 2 4, 0

D 1, 2 3, 5

⇒
(2)

L R

U 2, 2 4, 0
⇒
(3)

L

U 2, 2

(1) None of Player’s 1 (P1) strategies is dominated. But, player 2 (P2) will never choose
M (because of rationality). (2) After deleting strategy M, P1 will never choose D, as it is
strictly dominated (because P1 knows that P2 is rational). (3) Strategy R is dominated
for P2 (because P2 knows that P1 knows that P2 is rational). Thus, only the pure strategy
(U,L) survives iterated deletion of strictly dominated strategies.
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We now formalize this procedure to derive a new solution concept for the strategy σ that
survives iterated deletion of strictly dominated strategies.

Definition 4.1. In a normal-form game G, for each i ∈ I and each k ∈ N, we define
S0
i = Ai and

Sk
i = Sk−1

i \
{
ai ∈ Sk−1

i | ∃σi ∈ ∆(Sk−1
i ),∀a−i ∈ Sk−1

−i , ui(σi, a−i) > ui(ai, a−i)
}
.

and the set of player i’s pure strategies that survive iterated deletion of strictly dominated
strategies by

D∞
i =

∞⋂
k=0

Sk
i .

And we can extend it to mixed strategies:

Definition 4.2. In a normal-form game G, for each i ∈ I, we define the set of player i’s
mixed strategies that survive iterated deletion of strictly dominated strategies by

Σ∞
i = ∆(D∞

i ) \
{
σi ∈ ∆(D∞

i ) : ∃σ′
i ∈ ∆(D∞

i ),∀a−i ∈ D∞
−i, ui(σ

′
i, a−i) > ui(σi, a−i)

}
.

Example 4.2. A normal-form game with Σ∞
i ̸= ∆(D∞

i ).

L R

U 1, 0 −2, 0

M −2, 0 1, 0

D 0, 0 0, 0

For each player, D∞
i = S0

1 = Ai. Thus,
(
1
2U,

1
2M

)
∈ ∆(D∞

i ), but,
(
1
2U,

1
2M

)
is strictly

dominated by D. That is,
(
1
2U,

1
2M

)
/∈ Σ∞

i .

Theorem 4.1. Suppose that either (1) each Ai is finite, or (2) each ui(σi, σ−i) is contin-
uous and each Ai is compact (i.e., closed and bounded). Then D∞

i ̸= ∅.

Remarks:

• An infinite Normal-Form Game can yield D∞
i = ∅.

• In general Σ∞
i ̸= ∆(D∞

i ).

Contrary to the strict dominance solution concept, we can utilize ISD in any game, as it does
not require the presence of strictly dominant or strictly dominated strategies. Nevertheless,
the presence of strictly dominated strategies helps ISD illustrate how the assumption of
common knowledge of rationality influences players’ behavior. Without them, the process
can fail to provide a unique solution (see Battle of the sexes example).
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Proposition 4.1. If for a game G, σ∗ is a strict dominant strategy equilibrium, then σ∗

uniquely survives Iterated Elimination of Strictly Dominated Strategies (IESDS or ISD).

The above proposition tells us that whenever strict dominance results in a unique payoff,
then ISD will result in the same unique payoff after one round.

Remarks:

• ISD is a more widely applicable solution concept.

• Game Theory relies a lot in the strong assumption of common knowledge of ratio-
nality.

5 Rationalizability

The two solutions concepts previously described are based on eliminating actions that play-
ers will never play. Now, we turn to answer what strategies could potentially be played
under common knowledge of rationality.

Note that if a strategy is not strictly dominated for a player, then it suggest that under
some conditions this strategy could be played! We want to rationalize the behavior for
when a player would choose such strategy.

We can conceptualize it as follows: if a strategy σi is not strictly dominated, there must
be some combinations of strategies from player i’s opponents for which σi is the optimal
choice for player i. We now turn to formalize this.

5.1 Correlated Rationalizability

Beliefs about Opponents’ Strategies. In a normal-form game G, we call µ−i ∈ ∆(A−i)
player i’s belief about the opponents’ strategies. Given a belief µ−i, if player i plays a
strategy σi ∈ Σi, then his expected payoff is:

ui(σi, µ−i) =
∑
a∈A

ui(a)σi(ai)µ−i(a−i).

Remark: Recall A−i =
∏

j ̸=iAj . It is important to note that ∆
(∏

j ̸=iAj

)
̸=

∏
j ̸=i∆(Aj).

While the left-hand side is the set of correlated mixed strategies of all players but i,
the right-hand side is the set of independent mixed strategies of all players but i.

Definition 5.1 (Never-best response). In a normal-form game G, a strategy σi ∈ Σi

is a never-best response if for each µ−i ∈ ∆(A−i), there exists σ′
i ∈ Σi such that

ui(σ
′
i, µ−i) > ui(σi, µ−i).
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Given any belief a player holds about their opponents’ behavior, they must choose an
action that maximizes their expected payoff according to these beliefs.

Proposition 5.1. If σi is a strictly dominated strategy for player i, then it is a never-best
response.

Definition 5.2. In a normal-form game G, for each i ∈ I and each k ∈ N, we define
S̃0
i = Ai and

S̃k
i = S̃k−1

i \
{
ai ∈ S̃k−1

i | ∀µ−i ∈ ∆(S̃k−1
−i ),∃σ′

i ∈ ∆(S̃k−1
i ), ui(σ

′
i, µ−i) > ui(ai, µ−i)

}
.

pure strategies that are never-best responses We define player i’s set of correlated ratio-
nalizable pure strategies by

CR∞
i =

∞⋂
k=0

S̃k
i .

The logic behind this iterative process is as follows: At each step, it identifies which
actions could rational players potentially take? Each player then infers that no rational
player will ever choose pure strategies that are never best responses. Consequently, players
will believe that such pure strategies will not be played with positive probabilities. This
mutual understanding becomes common knowledge, thereby justifying the elimination of
these pure strategies from consideration in the game.

Definition 5.3. In a normal-form game G, we define the set of player i’s (correlated)
rationalizable mixed strategies by

Σ̃∞
i = ∆(R̃C

∞
i )\

{
σi ∈ ∆(R̃C

∞
i ) | ∀µ−i ∈ ∆(R̃C

∞
−i),∃σ′

i ∈ ∆(R̃C
∞
i ), ui(σ

′
i, µ−i) > ui(σi, µ−i)

}
.

As with IESDS, we have that generally, Σ∞
i ̸= ∆(S̃∞

i ), but this is not true in general.

Now, it is super important to note that the concept of never-best response is defined over
∆(A−i) for the following results to hold.

Lemma 5.1. In a finite normal-form game G, a strategy σi ∈ Σi is a never-best response
if and only if it is strictly dominated.

Proof. If part is inmediate. Only if part relies on proving the contrapositive using the
Separating Hyperplane Theorem (Taken from [2]).

If σi is not strictly dominated then it is not a never-best response. Suppose that σi is
not strictly dominated. That is, there exists no σ′

i ∈ Σi such that for each a−i ∈ A−i,

ui(σ
′
i, a−i) > ui(σi, a−i).
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There are, in total, L =
∏

j ̸=i |Aj | possible action profiles of all players but i, and we

enumerate them by a1−i, a
2
−i, . . . , a

L
−i. To invoke the Separating Hyperplane Theorem, we

define a set Y by

Y =
{(

ui(σ
′
i, a

l
−i)− ui(σi, a

l
−i)

)
: σ′

i ∈ ∆(Ai)
}
⊆ RL.

Since Y is a non-empty, convex set and Y ∩ RL
+ = ∅, it follows from the Separating

Hyperplane Theorem that there exist some c ∈ R and v ∈ RL \ {0} such that for each
x ∈ R++ and each y ∈ Y ,

v · x ≥ c > v · y.
It is immediate that v ∈ RL \ {0}. Normalize v to define µ−i =

v∑
l vl

∈ ∆(A−i). Then,

µ−i · x ≥ c̃ ≥ µ−i · y for each y ∈ Y , where c̃ = c
∥v∥1 . Since µ−i · x ≥ 0 and c̃ ≤ 0, we have

0 ≥ µ−i · y for each y ∈ Y . That is, for each σ′
i,

L∑
l=1

ui(σ
′
i, a

l
−i)µ−i(a

l
−i) ≤

L∑
l=1

ui(σi, a
l
−i)µ−i(a

l
−i),

or equivalently ui(σ
′
i, µ−i) ≤ ui(σi, µ−i). Thus, σi is not a never-best response.

Proposition 5.2 (Correlated Rationalizability = Iterated Strict Dominance). In
a finite form game G, D∞

i = RC∞
i and Σ∞

i = Σ̃∞
i .

5.2 Independent Rationalizability

Now, we consider the case where instead of defining a never-best response over the set of

correlated mixed strategies∆
(∏

j ̸=iAj

)
we defined it over the set of independent mixed

strategies of all players but i,
∏

j ̸=i∆(Aj). We formalize this as follows:

Definition 5.4. Given a normal-form game G, let Ŝ0
i = Ai and for each k ∈ N,

Ŝk
i = Ŝk−1

i \

ai ∈ Ŝk−1
i | ∀µ−i ∈

∏
j ̸=i

∆(Ŝk−1
j ), ∃σ′

i ∈ ∆(Ŝk−1
i ), ui(σ

′
i, µ−i) > ui(ai, µ−i)

 .

We define player i’s set of independent rationalizable pure strategies by

R∞
i =

∞⋂
k=0

Ŝk
i .

Definition 5.5. In a normal-form game G, we define the set of player i’s independent
rationalizable mixed strategies by

Σ̂∞
i = ∆(R∞

i )\

σi ∈ ∆(R∞
i ) | ∀µ−i ∈

∏
j ̸=i

∆(Ŝk−1
j ), ∃σ′

i ∈ ∆(R∞
i ), ui(σ

′
i, µ−i) > ui(σi, µ−i)

 .
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Remark: In general R∞
i ⊆ RC∞

i = D∞
i

• In two players game we have that R∞
i = RC∞

i = D∞
i .

• Generally, in games with more than two players R∞
i ⊆ RC∞

i = D∞
i .

When does the equivalence break down? In ISD, σ−i ∈ ∆(Sn
−i), his means that

it includes probability distributions achievable only through correlated actions by player
i’s opponents. In independent rationalizability, however, the focus is on the space of in-
dependent mixed strategies for player i’s opponents, which forms a nonconvex set and∏

j ̸=i∆(Ŝn
j ) ⊆ ∆(Sn

−i).

Example 5.1 (D∞
i ̸⊂ R∞

i ). Consider the following three-player game in which all of the
player’s payoffs are the same.

A1 = {A,B}, A2 = {C,D}, A3 = {M1,M2,M3,M4}

M1 M2 M3 M4

C D C D C D C D

A 8 0 4 0 0 0 3 3
B 0 0 0 4 0 8 3 3

Claim: M2 is not strictly dominated. This is easy to see by inspection. For M2 to be
strictly dominated, there needs to be another Mi (or mixed strategy) such that for every
possible action of players 1 and 2, the outcomes in Mi are better than in M2.

Claim: M2 is never a best response to any mixed strategy of players 1 and 2.

Proof. suppose σ1(A) = p and σ2(C) = q and towards a contradiction suppose not.

u3(M2, p, q) = 4pq + 4(1− p)(1− q) = 8pq + 4− 4p− 4q ≥


8pq,

8 + 8pq − 8(p+ q),
3

From the first two equations we get:

1 ≥ p+ q,
1 ≤ p+ q,

=⇒ p+ q = 1.

Substituting in the third equation: pq ≥ −1 + 4 = 3 =⇒ pq ≥ 3
8 ,
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Thus, substituting in the inequality 1 ≥ p+ q, we get:

p2 + pq ≤ p =⇒ p2 − p+
3

8
≤ 0 =⇒ (p− 1

2
)2 +

(
q − 1

8

)2

≤ 0

=⇒ (p− 1

2
)2 ≤ −1

8
, which has no real solutions.

∴ M2 is never a best response.

5.3 Relation between D∞
i and R∞

i

To sum up,

• The set of strictly dominated strategies is a strict subset of the set of never-best
response strategies, when defined over the space of independent mixed strategies for
player i’s opponents.

• Rationalizable strategies represent a further refinement of the strategies that survive
iterated strict dominance.

• R∞
i ⊆ D∞

i .

6 Nash Equilibrium

This section relies heavily on the notes of [2]. The concept of Nash equilibrium (NE) is
fundamental in game theory, representing a state where each player’s strategy is the best
response to the strategies of the others. This steady-state assumption implies that no
player can unilaterally improve their payoff by deviating from their chosen strategy, given
the strategies of the other players. That is, there is no profitable deviation for any player.
Nash equilibrium provides a robust solution concept in strategic games by encapsulating
mutual best responses. However, the presence of multiple Nash equilibria, without a clear
ranking, can complicate predictions. One key feature of a Nash equilibrium is the common
belief shared by all players regarding each other’s actions, fostering consistency and rational
expectations across the game. Note that a Nash equilibrium does not attempt to examine
the process by which a steady state is reached.

Definition 6.1 (Nash Equilibrium). In a normal-form game G, a strategy profile σ is
a Nash equilibrium if for each i ∈ I and each σ′

i ∈ Σi,

ui(σi, σ−i) ≥ ui(σ
′
i, σ−i).

A Nash equilibrium is a pure-strategy Nash equilibrium if every player plays a pure strategy.
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Proposition 6.1 (Property of NE). In a normal-form game G, let σ∗ be a Nash equi-
librium. For all ai, a

′
i ∈ Ai such that σ∗

i (ai), σ
∗
i (a

′
i) > 0, it must be that

ui(σ
∗
i , σ

∗
−i) = ui(ai, σ

∗
−i) = ui(a

′
i, σ

∗
−i).

Proof. Assume, for contradiction, that there exist ai, a
′
i ∈ Ai such that σ∗

i (ai) > 0 and
σ∗
i (a

′
i) > 0, but ui(ai, σ

∗
−i) > ui(a

′
i, σ

∗
−i). This implies that player i can achieve a higher

payoff by increasing the probability of playing ai instead of a′i.

6.1 Existence

To prove the existence of a Nash Equilibrium, it is convenient to use the following definition

Definition 6.2. In a normal-form game G, player i’s best-response correspondence is a
correspondence Bi : Σ−i → 2Σi such that for each σ−i ∈ Σ−i, Bi(σ−i) is the set of his
optimal strategies given that (player i believes) players −i play σ−i. That is,

Bi(σ−i) = arg max
σ′
i∈Σi

ui(σ
′
i, σ−i).

Now, with this, we can immediately redefine an equivalent definition of Nash equilibrium.

Definition 6.3. In a normal-form game G, σ = (σ1, . . . , σN ) ∈ Σ is a Nash equilibrium
if for each i ∈ I, σi ∈ Bi(σ−i).

We will use Kakutani’s Fixed Point Theorem. The following definitions are useful:

Definition 6.4. Let X,Y ⊆ Rn, with n < ∞. Let F : X → 2Y be a correspondence.

• F is non-empty-valued if for each x ∈ X, F (x) is non-empty

• F is convex-valued if for each x ∈ X, F (x) is convex.

• F has a closed graph if the graph Gr(F ) is closed in X×Y (with respect to the relative
topology), where we define Gr(F ) by

Gr(F ) = {(x, y) ∈ X × Y : y ∈ F (x)}.

6.2 Nash Equilibrium and Iterated Strict Dominance/Rationalizability

Proposition 6.2. In a finite normal-form game G, suppose that σ∗ is a Nash equilibrium.
For each i ∈ I, if σ∗

i (ai) > 0 then:

1. ai survives iterated deletion of strictly dominated strategies. That is, ai ∈ S∞
i .

2. ai is correlated rationalizable. That is, ai ∈ CR∞
i .
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Theorem 6.1 (Kakutani’s Fixed Point Theorem). Let X be a non-empty, compact,
convex subset of Rn, with n < ∞. Let F : X → 2Y be a non-empty-valued, convex-valued
correspondence with a closed graph. Then, there exists some x∗ ∈ X such that x∗ ∈ F (x∗).

Theorem 6.2 (Nash’s Existence Theorem). In a finite normal-form game G, there
exists a Nash equilibrium.

Proof. Let B : Σ → 2Σ be defined by B(σ) = (B1(σ−1), . . . , BN (σ−N )) for each σ ∈ Σ. To
apply Kakutani’s Fixed Point Theorem, we verify the following properties:

1. Σi is non-empty, compact, and convex.

2. Bi is non-empty-valued. To see this, note that ui is continuous in σi and Σi is
compact.

3. Bi is convex-valued. To see this, let σi, σ
′
i be in Bi(σ−i). By Proposition 1, all

ai ∈ supp(σi) and all a′i ∈ supp(σ′
i) yield the same payoff. Hence, player i is indifferent

to any randomization over supp(σi) ∪ supp(σ′
i).

4. Bi has a closed graph. To see this, let (σk, σ
′
k) ∈ Gr(B) such that σ′

k → σ′ and
σk → σ as k → ∞. It suffices to show that σi ∈ Bi(σ−i) for each i ∈ N . Note that
for each k ∈ N , ui(σ

′
k, σ−i) ≥ ui(σ

′
ki
, σ−i) for each σ′

i. Hence, limk→∞ ui(σ
′
k, σ−i) ≥

limk→∞ ui(σ
′
i, σ−i) for each σ′

i. Since ui is continuous, ui(σ
′, σ−i) ≥ ui(σ

′
i, σ−i) for

each σ′
i.

Hence, B satisfies all the conditions for Kakutani’s Fixed Point Theorem. There thus exists
some σ∗ ∈ Σ such that σ∗ ∈ B(σ∗).

Example 6.1 (Aumann’s (1974) game). Consider the following game

A B

A 5, 1 0, 0
B 4, 4 1, 5

There are three Nash equilibria: two pure-strategy Nash equilibria (A,A) and (B,B); and
one mixed-strategy Nash equilibrium 1

2(A,B) for each player.
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